
August 1997 The Delphi Magazine 35

Beating the System
by Dave Jewell

In this month’s article, I’m going
to describe the internal structure

of those ubiquitous ZIP files and
explain how you can write Delphi
programs that make use of this in-
formation. Specifically, this month
I’ll concentrate on the develop-
ment of a drop-in Delphi compo-
nent that can be used to give a neat,
object-oriented interface to ZIP
files. Next month, I’ll make use of
this component (and a few more
bells and whistles) to develop a
program which can scan your hard
disk for files, even searching for
them inside any ZIP files it encoun-
ters. The program will include the
ability to launch your favourite ZIP
file utility (WinZip, or whatever)
from where you can extract the
files you’re interested in.

Introducing TZipFile...
The code for my ZIP-sniffing com-
ponent is given in Listing 1. Before
doing anything else, there are a few

important caveats I should point
out. In general, when writing arti-
cles for programming magazines, I
don’t much mind what people do
with the code. However, in this par-
ticular case I’m retaining rights to
the code because I intend to use it
as the basis for a shareware com-
ponent that will allow Delphi
programs to access ZIP files, de-
compress zipped files and perhaps
compress files as well. That’s quite
a bit of work and it isn’t finished
yet, but you can see some hints in
the code listing such as the pres-
ence of Password and ExtractDir
properties. If you want to use any
of this code for non-commercial
purposes, then go right ahead. If
you want to use the code as the ba-
sis for a file-find utility like that I’ve
outlined above, then I’m perfectly
happy with that too. But please
don’t simply take my code, add
data decompression routines, and
sell it as your own ZIP component.
If you do that, it’ll be time to phone
the lawyers!

Also, please bear in mind that al-
though for convenience I’ve re-
ferred to TZipFile as a component,
it’s not currently configured as
such. To get it on your Component
Palette, you’d need to add a Regis-
terClasses call and have it derive
from TComponent instead of TObject.
I haven’t bothered doing this be-
cause the class contains a large
number of indexed properties and
relatively few non-indexed proper-
ties. As you’ll appreciate, indexed
properties aren’t directly sup-
ported by the Object Inspector, so I
can’t see much benefit in making
TZipFile into a design-time compo-
nent in the normal sense.

Finally, please bear in mind that
this code is ‘work in progress’ and
isn’t guaranteed bug free. In par-
ticular, I haven’t tried porting the
code to 16-bit Delphi yet. However,
I believe that the present code
more than adequately implements
the functionality needed by next
month’s file-searching program. If I

discover any ‘gotchas’ in the
meantime, then I’ll let you know
next month!

With the preliminaries out of the
way, let’s look at the properties
and methods provided by TZip-
File. In order to use the compo-
nent, you obviously need to create
an instance of TZipFile, optionally
passing it the fully-qualified name
of an existing ZIP file. The specified
ZIP file is then examined and the
various other component proper-
ties are set up according to the in-
formation contained therein. If you
don’t want to specify a ZIP file
name when the component is cre-
ated, then you can pass an empty
string. At any time, you can exam-
ine the ZipName property to deter-
mine the ZIP file currently
associated with the component.
To examine the contents of an-
other ZIP file, simply set the
ZipName property to point to the
new file.

Perhaps the most important
non-indexed property associated
with the component is FilesCount.
As the name suggests, this tells the
application how many entries are
contained within the ZIP file. If you
try and read this property before
specifying a ZIP file name, the com-
ponent will raise a EZipErr excep-
tion with the text No ZIP file
specified. The ExtractDir and Pass-
word properties are reserved for fu-
ture use (as mentioned earlier!)
and don’t do anything in the pres-
ent implementation. LowerCase-
Names determines whether or not
the name of files contained within
the ZIP should be returned as
lower case names. By default, this
option is on. Bear in mind that
pathname information is never
forced to lower case, only the file-
name. Finally, the SortStyle and
ReverseSort properties determine
the order in which the filenames
are logically sorted. SortStyle de-
faults to sRaw, meaning that the
files are returned in the same order
that they exist within the ZIP file

36 The Delphi Magazine Issue 24

directory. You can choose any of
the values from Table 1 for this
property.

In conjunction with the above,
you can also set the ReverseSort
property. This will reverse the
‘sense’ of the sort, so that what was
the first item will be the last, and so
on. As you’ll see when we look at
the code, changing the SortStyle
property is quite a rapid operation:
I’ve taken some pains to ensure
that this is the case. Re-sorting the
files does not require the ZIP file di-
rectory to be re-read from disk. As
my test vehicle, I have a large ZIP
file (about 3Mb) containing almost
3,500 icons. Using my little test pro-
gram, TZipFile will re-sort this file
in around one second on a 200MHz
Pentium Pro machine. If you factor
out the time required by the VCL to
reload the TListBox components
with the re-sorted filename list, the
actual sort time appears to be
around a quarter of a second.
Re-sort performance seems to be
as good (if not better) than WinZip,
the market leader.

Finally, there are a set of thirteen
indexed properties, each of which
appears as an array property to the
calling code. You can access these
arrays using an index in the range
[0..FilesCount - 1]. It goes with-
out saying that the supplied index
is always relative to the current
SortStyle and ReverseSort proper-
ties. In other words, if you access
an array with an index value of five,
and then change SortStyle or Re-
verseSort, the chances are that an
index of five will then give you a
completely different entry to what
you had before. Thus, if you’re
looping through a property array,
don’t change the sort configura-
tion until you’ve finished the loop,
or you’ll obviously get nonsensical
results.

It would be tedious to describe
each of these array properties in
detail, so I’ll simply list them in
Table 2. The CompressMethod array
property indicates the type of com-
pression used to compress a file
entry. The type of this property is
CompressType, as shown in the code
listing. You will almost certainly
never see ResTokenised, ResEn-
hancedDeflate or ResPKLibrary

compression types in any ZIP file
you’re likely to come across. As far
as I’m aware, the first two have
never been supported in generally
available ZIP software, and the last
one is reserved for use by the
PKWare Data Compression Li-
brary. For the convenience of the
application program, the Compress-
MethodNameproperty returns a plain
English description of the com-
pression method. If the associated
code offends the internationalisa-
tion purists (!) you can easily put
the relevant strings into resources.

The structure of ZIP files allows
an arbitrary “comment” to be asso-
ciated with each stored file. The
CommentLengthproperty returns the
length of the comment (in bytes)
associated with a particular entry,
but in the code presented here, I

haven’t (as yet) provided a mecha-
nism for accessing the comment
data itself; it’s really irrelevant as
far as next month’s file search util-
ity is concerned.

The CompressionRatio array
property is used to return the com-
pression ratio for an entry, ex-
pressed as a percentage. I chose to
return this value as an integer for
the sake of language independence
(I have plans for porting this code
to non-Delphi development envi-
ronments) but if you want the
exact floating-point value, you can
obviously calculate it by looking at
the CompressedSize and Original-
Size properties for the entry
in question. Internally, when the

SRaw Files are sorted as they appear in the ZIP file directory

SFullName Files are sorted alphabetically by their full name

SFileName Files are sorted alphabetically by file name only

SPathName Files are sorted alphabetically by path name only

SCompressedSize Files are sorted in order of compressed size

SOriginalSize Files are sorted in order of original (uncompressed) size

SCompressRatio Files are sorted in order of their compression ratio

SDate Files are sorted in order of modification date and time

➤ Table 1: SortStyle values

FullName Full name of the entry – pathname and filename,
eg WOMBAT\SMURF.ICO

FileName Filename part of the entry, eg. SMURF.ICO

PathName Pathname part of the entry, eg WOMBAT\

Encrypted True if this entry is encrypted and requires a
password

DiskNumber Starting disk number (for disk-spanning archives)

Crc32 32-bit CRC check for this file

CompressMethod Method used to compress this file

DateTime Modification date/time for this file

CompressedSize Compressed size of the file in bytes

OriginalSize Uncompressed size of the file in bytes

CompressMethodName Plain-English description of the compression
method

CommentLength Length of file comment in bytes

CompressionRatio Compression ratio expressed as an Integer

➤ Table 2: Array properties

➤ Facing page: Listing 1

August 1997 The Delphi Magazine 37

unit Zip;
interface
{$A-}
uses WinTypes, WinProcs, SysUtils, Classes, Match;
type
EZipErr = class(Exception);
SortType = (sRaw, sFullName, sFileName, sPathName,

sCompressedSize, sOriginalSize, sCompressRatio, sDate);
CompressType = (Stored, Shrunk, Reduce1, Reduce2, Reduce3,

Reduce4, Imploded, Res Tokenised, Deflated,
ResEnhancedDeflate, ResPKLibrary);
TZipFile = class(TObject)
private
Dir: TList;
SortMap: TList;
fd: Integer;
fSort: SortType;
pTail: Pointer;
SelFiles: Integer;
fName: String;
fExtractDir: String;
fPassword: String;
fLowerCaseNames: Boolean;
fReverseSort: Boolean;
procedure LoadDirectory;
procedure UnloadDirectory;
function GetSigOffset(Signature: LongInt): LongInt;
function GetDirectoryEntry(Idx: Integer): Pointer;
function GetFilesCount: Integer;
procedure SortFiles;
procedure DoSort(L, R: Integer);
function GetFullName(Index: Integer): String;
function GetFileName(Index: Integer): String;
function GetPathName(Index: Integer): String;
function GetEncrypted(Index: Integer): Boolean;
function GetCompressMethod(Index: Integer):
CompressType;

function GetCompressMethodName(Index: Integer): String;
function GetCompressionRatio(Index: Integer): Integer;
function GetDiskNumber(Index: Integer): Integer;
function GetCrc32(Index: Integer): LongInt;
function GetCompressedSize(Index: Integer): LongInt;
function GetOriginalSize(Index: Integer): LongInt;
function GetDateTime(Index: Integer): TDateTime;
function GetCommentLength(Index: Integer): Word;
procedure SetZipName(const FileName: String);
procedure SetSortType(Val: SortType);
procedure SetReverseSort(Val: Boolean);

public
constructor Create(const FileName: String);
destructor Destroy; override;
procedure Reset;
property FullName [Index: Integer]: String read

GetFullName; default;
property FileName [Index: Integer]: String
read GetFileName;

property PathName [Index: Integer]: String
read GetPathName;

property Encrypted [Index: Integer]: Boolean
read GetEncrypted;

property DiskNumber [Index: Integer]: Integer
read GetDiskNumber;

property Crc32 [Index: Integer]: LongInt read GetCrc32;
property CompressMethod [Index: Integer]: CompressType
read GetCompressMethod;

property DateTime [Index: Integer]: TDateTime
read GetDateTime;

property CompressedSize [Index: Integer]: LongInt
read GetCompressedSize;

property OriginalSize [Index: Integer]: LongInt
read GetOriginalSize;

property CompressMethodName [Index: Integer]: String
read GetCompressMethodName;

property CommentLength [Index: Integer]: Word
read GetCommentLength;

property CompressionRatio [Index: Integer]: Integer
read GetCompressionRatio;

published
property ZipName: String read fName write SetZipName;
property SortStyle: SortType
read fSort write SetSortType;

property ExtractDir: String
read fExtractDir write fExtractDir;

property Password: String
read fPassword write fPassword;

property ReverseSort: Boolean
read fReverseSort write SetReverseSort default False;

property LowerCaseNames: Boolean read fLowerCaseNames
write fLowerCaseNames default True;

property FilesCount: Integer read GetFilesCount;
end;

implementation
type
PTailRec = ^TailRec;
TailRec = record { End of central dir: ‘tail’ }
Signature: LongInt; { should be $06054b50 }
ThisDisk: Word; { # of this disk }
DirDisk: Word; { # of disk with central dir start }
NumEntries: Word; { # of central dir entries this disk }
TotEntries: Word; { # of central dir entries total }
DirSize: LongInt; { size of the central directory }
DirOffset: LongInt; { offset of c-dir wrt starting disk }
BannerLength: Word; { size of following comment if any }

end;
type
PDirEntry = ^DirEntry;
DirEntry = record { Central Directory entry }
Signature: LongInt; { should be $02014b50 }
CreatorVersion: Word; { version of ZIP that created it }
ExtractorVersion: Word; { version of ZIP needed for extract }
GenBits: Word; { general purpose bit flags }
CompressMethod: Word; { compression method for this file }
DateTime: LongInt; { file modification date/time }
crc32: LongInt; { 32-bit file CRC }
CompressedSize: LongInt; { compressed size of file }
OriginalSize: LongInt; { uncompressed size of file }
FileNameLen: Word; { length of filename }
ExtraLen: Word; { length of extra info }
CommentLen: Word; { length of comment stuff }
DiskNumStart: Word; { starting disk number }
IFileAttribs: Word; { File attributes }
XFileAttribs: LongInt; { External file attributes }
HeaderPos: LongInt; { offset of local header }

end;
function GetDirEntrySize(const Entry: DirEntry): Integer;
begin
with Entry do Result := sizeof(DirEntry) + FileNameLen +

ExtraLen + CommentLen;
end;
function IsValidTailPos(fd: Integer; tailPos: LongInt):
Bool;

var tail: TailRec;
begin
{ This function is needed to cope with nested ZIP files }
{ Without it, we might accidentally accept a tail marker }
{ inside a nested ZIP rather than the ZIP’s own marker ! }
Result := False;
_llseek(fd, tailPos, 0);
_lread(fd, @tail, sizeof(TailRec));
if tail.Signature = $06054b50 then begin
_llseek(fd, tail.DirOffset, 0);
_lread(fd, @tail, sizeof(LongInt));
Result := tail.Signature = $02014b50;

end;
end;
function FindSig(fd: Integer; buff: PChar; len: Integer;
fPos, Signature: LongInt): integer;

var
p: PChar;
pp: ^LongInt absolute p;

begin
Result := -1;
if len <> 0 then begin
p := buff;
while len <> 0 do begin
if (pp^ = Signature) and
IsValidTailPos(fd, fpos + p - buff) then begin
Result := p - buff;
Exit;

end;
Inc(p);
Dec(len);

end;
end;

end;
{ These utility routines extract various fields
from a DirEntry }

function DirGetFullName(pde: PDirEntry): String;
var
Idx: Integer;

begin
Result := ‘’;
if pde <> Nil then with pde^ do begin
{$IFDEF WIN32}
SetLength(Result, FileNameLen);
{$ELSE}
Result[0] := Chr(FileNameLen);
{$ENDIF}
Move((PChar(pde) + sizeof(DirEntry))^, Result [1],

FileNameLen);
{ Massage UNIX forward slashes to Wintel backslashes }
for Idx := 1 to Length(Result) do
if Result [Idx] = ‘/’ then Result [Idx] := ‘\’;

end;
end;
function DirGetCompRatio(pde: PDirEntry): Double;
begin
Result := 0;
if pde <> Nil then with pde^ do
if OriginalSize <> 0 then
Result := ((OriginalSize - CompressedSize) * 100) /

OriginalSize;
end;
constructor TZipFile.Create(const FileName: String);
begin
fd := -1;
SortMap := TList.Create;
fLowerCaseNames := True;
fReverseSort := False;
SetZipName(FileName);

end;

{ Continued on page 38... }

38 The Delphi Magazine Issue 24

{ Continued from page 37... }
procedure TZipFile.SetZipName(const FileName: String);
var
tail: TailRec;
tailPos: LongInt;
szName: array [0..255] of Char;

begin
UnloadDirectory;
fName := ‘’; fPassword := ‘’;
{ If filename is empty, just exit }
if FileName = ‘’ then Exit;
{ Get filename and make sure it has a proper extension }
StrPCopy(szName, FileName);
if StrPos(szName, ‘.’) = Nil then lstrcat(szName, ‘.zip’);
{ Now try to open the file }
fd := _lopen(szName, of_Read or of_Share_Deny_Write);
if fd = -1 then
raise EZipErr.Create(‘Cannot open specified file’);

fName := StrPas(szName);
{ OK - it’s there, but is it a valid ZIP file ? }
tailPos := GetSigOffset($06054b50);
if tailPos < 0 then
raise EZipErr.Create(‘Not a valid ZIP file’);

{ Found the directory tail - ensure no disk spanning }
_llseek(fd, tailPos, 0);
_lread(fd, @tail, sizeof(TailRec));
if (tail.ThisDisk <> 0) or (tail.DirDisk <> 0) then
raise EZipErr.Create(
‘Disk spanning not yet implemented’);

{ Read directory tail and banner into our data structure }
GetMem(pTail, sizeof(TailRec) + tail.BannerLength);
_llseek(fd, tailPos, 0);
_lread(fd, PChar(pTail), sizeof(TailRec) +

tail.BannerLength);
{ Now get central directory & ensure all files selected }
LoadDirectory;

end;
destructor TZipFile.Destroy;
begin
UnloadDirectory;
SortMap.Free;
Inherited Destroy;

end;
procedure TZipFile.LoadDirectory;
var
p: PChar;
de: DirEntry;
sz, Idx: Integer;
function NonBlankEntry: Boolean;
begin
Result := (de.CompressedSize <> 0) or
(de.OriginalSize <> 0) or (de.CompressMethod <> 0);

end;
begin
{ Initialize directory TList }
Dir := TList.Create;
Dir.Capacity := PTailRec(pTail)^.NumEntries;
{ Seek to start of file }
_llseek(fd, PTailRec(pTail)^.DirOffset, 0);
{ Read each entry in consecutively }
for Idx := 0 to PTailRec(pTail)^.NumEntries - 1 do begin
_lread(fd, @de, sizeof(de));
sz := GetDirEntrySize(de);
GetMem(p, sz);
Move(de, p^, sizeof(de));
_lread(fd, p + sizeof(de), sz - sizeof(de));
{ If this is a blank ‘directory-marker’ record skip it }
if NonBlankEntry then Dir.Add(p) else FreeMem(p, sz);

end;
Reset;

end;
function TZipFile.GetDirectoryEntry(Idx: Integer): Pointer;
begin
if Dir = Nil then
raise EZipErr.Create(‘No ZIP file specified’);

if fReverseSort then
Idx := SortMap.Count - 1 - Idx;

Result := SortMap [Idx];
end;
procedure TZipFile.DoSort(L, R: Integer);
var
P: Pointer;
I, J: Integer;
function SortCompare(Key1, Key2: PDirEntry): Integer;
var
D1, D2: Double;
S1, S2: String;

begin
D1 := 0; D2 := 0; Result := 0; { Just to shut compiler up }
case fSort of
sFullName, sFileName, sPathName:
begin
S1 := DirGetFullName(Key1);
S2 := DirGetFullName(Key2);
if fSort = sFileName then begin
S1 := ExtractFileName(S1);
S2 := ExtractFileName(S2);

end;
if fSort = sPathName then begin
S1 := ExtractFilePath(S1);
S2 := ExtractFilePath(S2);

end;
Result := CompareText(S1, S2);

end;
sDate, sCompressedSize, sOriginalSize, sCompressRatio:
begin
if fSort = sDate then begin
D1 := FileDateToDateTime(Key1^.DateTime);
D2 := FileDateToDateTime(Key2^.DateTime);

end;
if fSort = sCompressedSize then begin
D1 := Key1^.CompressedSize;
D2 := Key2^.CompressedSize;

end;
if fSort = sOriginalSize then begin
D1 := Key1^.OriginalSize;
D2 := Key2^.OriginalSize;

end;
if fSort = sCompressRatio then begin
D1 := DirGetCompRatio(Key1);
D2 := DirGetCompRatio(Key2);

end;
if D1 = D2 then
Result := 0

else if D1 > D2 then
Result := 1

else
Result := -1;

end;
end;

end;
begin
repeat
I := L; J := R; P := SortMap [(L + R) shr 1];
repeat
while SortCompare(SortMap [I], P) < 0 do Inc(I);
while SortCompare(SortMap [J], P) > 0 do Dec(J);
if I <= J then begin
SortMap.Exchange(I, J);
Inc(I);
Dec(J);

end;
until I > J;
if L < J then DoSort(L, J);
L := I;

until I >= R;
end;
procedure TZipFile.SortFiles;
var Idx: Integer;
begin
{ First, clear the sort map }
SortMap.Clear;
SortMap.Capacity := FilesCount;
{ Initialise the sort map for ‘sRaw’ mode }
for Idx := 0 to FilesCount - 1 do
SortMap.Add(Dir [Idx]);

{ Now do the actual sort }
if fSort <> sRaw then
DoSort(0, SortMap.Count - 1);

end;
procedure TZipFile.SetSortType(Val: SortType);
begin
fSort := Val;
if Dir <> Nil then
SortFiles;

end;
procedure TZipFile.SetReverseSort(Val: Boolean);
begin
fReverseSort := Val;

end;
procedure TZipFile.Reset;
var idx: Integer;
begin
SetSortType(fSort);
SelFiles := FilesCount;
for idx := 0 to SelFiles - 1 do
PDirEntry(GetDirectoryEntry(idx))^.Signature := 1;

end;
procedure TZipFile.UnloadDirectory;
procedure FreeList(var List: TList);
var
p: Pointer;
Idx: Integer;

begin
if List <> Nil then begin
for Idx := 0 to List.Count - 1 do begin
p := List.Items [Idx];
FreeMem(p, GetDirEntrySize(PDirEntry(p)^));

end;
List.Free;
List := Nil;

end;
end;

begin
FreeList(Dir);
if pTail <> Nil then begin
FreeMem(pTail, sizeof(TailRec) +
PTailRec(pTail)^.BannerLength);

pTail := Nil;
end;

{ Continued on page 40... }

August 1997 The Delphi Magazine 39

SortStyle is set to SCompressRatio,
the full floating point value is used,
so that the sort order matches
other programs such as WinZip.

ZIP File Structure
Now you understand how to use
the TZipFile class, it’s time to look
at how it works. However, before
we can do that, you need to get
some idea of the internal layout of a
ZIP file. Most file formats start off
with a header which contains
pointers to other information
within the file: the icon and bitmap
files I talked about a couple of
months ago are typical examples.
Surprisingly, ZIP files aren’t like
this. Instead, the most important
data structure, the central direc-
tory, is located towards the end of
the file and is followed by an “End
of Central Directory Record.” It’s
the End of Central Directory Re-
cord (normally referred to as the
“tail” and equivalent to the TailRec
data structure in my code) which
must be located before the con-
tents of the file can be enumerated.

One of the great things about ZIP
files is that you can arbitrarily add
files to an existing ZIP archive, or
remove files just as easily. If the di-
rectory was placed at the begin-
ning of the ZIP file, adding a new file
would increase the size of the di-
rectory, thus necessitating that
everything else “shuffle down” to-
wards the bottom of the file. The
same argument applies to the re-
moval of entries, causing a “shuffle
up.” By locating the directory to-
wards the end of the file, this shuf-
fle is largely avoided.

Notice that I’ve been careful to
say “towards the end of the file”
rather than “at the end of the file.”
Again, this is a performance opti-
misation devised by PKWare, the
original creators of the ZIP format.
Suppose you add a few small files
to a ZIP file: the PKZIP program will
typically increase the size of the di-
rectory slightly and write the new
files after the central directory and
tail. However, if it detects that the
tail and central directory are going

to end up more than 64Kb from the
end of the file, some shuffling gets
performed and the tail and central
directory are once more moved to
the end of the file. The overall strat-
egy is to minimise disk-intensive
shuffles most of the time.

With the benefit of hindsight,
this all seems rather bizarre. A
fairly obvious question is why on
earth weren’t the first four bytes of
the file used as a pointer to the cen-
tral directory, wherever it might
wind up after each operation?
Nowadays, that would be an emi-
nently sensible way of doing
things, but you’ve got to bear in
mind that this file format evolved
at a time when some PCs only had
floppy disk drives! Floppy disk
seek time (the time needed to
move the read/write head from
track to track) was, and still is, hor-
rendously slow. PKWare designed
the file format in order to minimise
the number of large scale seeks re-
quired in the normal course of
events. In fact, the PKWare applica-
tion note even suggests that they
were concerned about compatibil-
ity with non-seekable output
devices.

The bottom line is this: a legal
ZIP program will contain a “tail”
record within 64Kb of the end of
the file and we have to search for it,
backwards from the file end. Just in

case the ZIP file isn’t kosher, I actu-
ally search the entire file rather
than the last 64Kb, only giving up if
the tail cannot be located. As you’ll
see from the code, the TailRec
structure contains a field called
DirOffset which tells us where the
central directory is located. The
central directory consists of a con-
tiguous sequence of directory en-
tries, of type DirEntry. However,
these directory entries are all vari-
able sized: the size of each entry
depends on the length of the file
name, the length of the file com-
ment (if any) and the amount of
“extra information” associated
with the file. This extra informa-
tion field is a way of associating ar-
bitrary information with each ZIP
file entry; it’s used by some ZIP-
compatible software to store oper-
ating system dependent informa-
tion which won’t fit into the
ordinary directory entry. The
overall structure of a central direc-
tory entry (which is taken from
PKWare’s application note) is
shown in Table 3.

How It Works
Armed with the above informa-
tion, we can examine the various
routines in Listing 1. When you cre-
ate a new TZipFileobject and asso-
ciate it with a ZIP file, the first
routine of any interest that gets

➤ Facing page:
Listing 1 continued

Central file header signature 4 bytes (0x02014b50)
Version made by 2 bytes
Version needed to extract 2 bytes
General purpose bit flag 2 bytes
Compression method 2 bytes
Last mod file time 2 bytes
Last mod file date 2 bytes
CRC-32 4 bytes
Compressed size 4 bytes
Uncompressed size 4 bytes
Filename length 2 bytes
Extra field length 2 bytes
File comment length 2 bytes
Disk number start 2 bytes
Internal file attributes 2 bytes
External file attributes 4 bytes
Relative offset of local header 4 bytes
Filename variable size
Extra field variable size
File comment variable size

➤ Table 3: Central directory entry structure

40 The Delphi Magazine Issue 24

{ Continued from page 38... }

if fd <> -1 then begin
_lclose(fd);
fd := -1;

end;
end;
function TZipFile.GetSigOffset(Signature: LongInt): LongInt;
const
InBufferSize = 8192; { for sig searching }

var
buff: PChar;
fs, pos: LongInt;
bp, bytesread: Integer;

begin
GetMem(buff, InBufferSize);
try
fs := _llseek(fd, 0, 2);
if fs <= InBuffersize then
pos := 0

else
pos := fs - InBufferSize;

_llseek(fd, pos, 0);
{ Get initial buffer content }
_lread(fd, buff, InBufferSize);
bp := FindSig(fd, buff, InBufferSize, pos, Signature);
{ This is the main search loop... }
while (bp < 0) and (pos > 0) do begin
Move(buff, buff [InBufferSize - 4], 4);
Dec(pos, InBufferSize - 4);
if pos < 0 then pos := 0;
_llseek(fd, pos, 0);
bytesRead := _lread(fd, buff, InBufferSize - 4);
if bytesRead < InBufferSize - 4 then
Move(buff [InBufferSize - 4],
buff [BytesRead], 4);

if bytesRead > 0 then begin
Inc(bytesRead, 4);
bp :=
FindSig(fd, buff, bytesRead, pos, Signature);

end;
end;
if bp < 0 then
GetSigOffset := -1

else
GetSigOffset := pos + bp;

finally
FreeMem(buff, InBufferSize);

end;
end;
function TZipFile.GetFilesCount: Integer;
begin
if Dir = Nil then
raise EZipErr.Create(‘No ZIP file specified’);

Result := Dir.Count;
end;
function TZipFile.GetFileName(Index: Integer): String;
begin
Result := ExtractFileName(GetFullName(Index));
if fLowerCaseNames then
Result := LowerCase(Result);

end;
function TZipFile.GetPathName(Index: Integer): String;
begin
Result := ExtractFilePath(GetFullName(Index));

end;
function TZipFile.GetFullName(Index: Integer): String;
begin
Result := DirGetFullName(GetDirectoryEntry(Index));

end;
function TZipFile.GetDateTime(Index: Integer): TDateTime;
var pde: PDirEntry;
begin
Result := 0;
pde := GetDirectoryEntry(Index);
if pde <> Nil then
Result := FileDateToDateTime(pde^.DateTime);

end;
function TZipFile.GetEncrypted(Index: Integer): Boolean;

var pde: PDirEntry;
begin
Result := False;
pde := GetDirectoryEntry(Index);
if pde <> Nil then
Result := (pde^.GenBits and 1) <> 0;

end;
function TZipFile.GetCompressionRatio(Index: Integer):
Integer;
begin
Result := Round(DirGetCompRatio(
GetDirectoryEntry(Index)));

end;
function TZipFile.GetCompressedSize(
Index: Integer): LongInt;

var pde: PDirEntry;
begin
Result := 0;
pde := GetDirectoryEntry(Index);
if pde <> Nil then
Result := pde^.CompressedSize;

end;
function TZipFile.GetOriginalSize(Index: Integer): LongInt;
var pde: PDirEntry;
begin
Result := 0;
pde := GetDirectoryEntry(Index);
if pde <> Nil then
Result := pde^.OriginalSize;

end;
function TZipFile.GetCompressMethod(
Index: Integer): CompressType;

var pde: PDirEntry;
begin
Result := Stored;
pde := GetDirectoryEntry(Index);
if pde <> Nil then
Result := CompressType(pde^.CompressMethod);

end;
function TZipFile.GetDiskNumber(Index: Integer): Integer;
var pde: PDirEntry;
begin
Result := 1;
pde := GetDirectoryEntry(Index);
if pde <> Nil then
Result := pde^.DiskNumStart;

end;
function TZipFile.GetCrc32(Index: Integer): LongInt;
var pde: PDirEntry;
begin
Result := 0;
pde := GetDirectoryEntry(Index);
if pde <> Nil then
Result := pde^.crc32;

end;
function TZipFile.GetCommentLength(Index: Integer): Word;
var pde: PDirEntry;
begin
Result := 0;
pde := GetDirectoryEntry(Index);
if pde <> Nil then
Result := pde^.CommentLen;

end;
function TZipFile.GetCompressMethodName(
Index: Integer): String;

var typ: CompressType;
begin
typ := GetCompressMethod(Index);
case typ of
Stored: Result := ‘Stored’;
Shrunk: Result := ‘Shrunk’;
Reduce1..Reduce4: Result := ‘Reduced’;
Imploded: Result := ‘Imploded’;
Deflated: Result := ‘Deflated’;

else
Result := Format(‘Unknown(%d)’, [Ord(typ)]);

end;
end;
end.

➤ Listing 1, concluded

called is TZipFile.SetZipName. This
calls UnloadDirectory to dispose of
any previous directory context
and then tries to open the file, gen-
erating an exception if the file
couldn’t be found. As a philosophi-
cal aside, let me just say that I don’t
believe a low-level ‘file format in-
terface class’ such as TZipFile

should have any sort of user inter-
face. It doesn’t prompt for files, it
doesn’t put up dialogs to indicate
errors, it is completely faceless.
The user interface is the sole re-
sponsibility of the calling applica-
tion. Instead, TZipFile responds to
error conditions by generating ex-
ceptions, which can be intercepted
and handled appropriately by the
application itself.

Once the file is open, GetSigOff-
set is called to find the location of
the tail record within the ZIP file.
The tail can be identified because
it contains a special four byte sig-
nature in the first four bytes; more
on this in a moment. If no tail can
be found an exception is raised to
indicate that it’s not a valid ZIP file.
If the tail is found, the complete tail
record is read into memory and

August 1997 The Delphi Magazine 41

the LoadDirectory method is called
to load the ZIP directory proper.

The GetSigOffset routine is re-
sponsible for scanning backwards
through the ZIP file, looking for the
tail signature. It may look a little
more complicated than you’d
expect, that’s because the file is
examined in blocks of approxi-
mately 8Kb and it’s possible that
the four byte signature might
straddle two of these blocks, caus-
ing it to be missed if we simply ex-
amined each block individually.
Within the GetSigOffset routine,
FindSig is called to look for the sig-
nature within the current buffer.
There is perhaps some argument
for rewriting FindSig in assembler
code to speed up the signature
search, but in practice it wouldn’t
be worthwhile unless you were
dealing with a very large ZIP file
that didn’t include the tail within
the last 64Kb of the file.

If a signature is detected another
routine, IsValidTailPos, is called to
validate the tail position. This is a
very important and subtle point.
As you’ll no doubt appreciate, it’s
perfectly legitimate to store one
ZIP file inside another ZIP file, a
child inside a parent, so to speak.
Because ZIP files are already highly
compressed, a typical ZIP program
will try to compress the child ZIP
file, fail, and default to merely
‘storing’ (CompressMethod = Stored)
the child inside the parent file. This
means that the enclosing ZIP will
contain an uncompressed copy of
the child. Now imagine what would
happen if our signature scanning
routine picked up the tail signature
of the child instead of the signature
of the parent. I can guarantee you
that this not only can happen, but
sooner or later it will: the voice of
bitter experience! If this problem
goes undetected, then deeply bad
things will occur! That’s the pur-
pose of the IsValidTailPos routine.
It ensures that the detected tail sig-
nature really is the tail signature of
the outermost, enclosing ZIP file.

Once we’ve got the tail, the rest
is easy. LoadDirectory is called to
read the central directory into
memory, one entry at a time, and
store it in the Dir TList variable.
This routine calls another small

function, GetDirEntrySize, to calcu-
late the total size of each directory
entry, allowing for all the variable-
sized information that I’ve previ-
ously mentioned. There’s another
subtle point here: if you look at a
ZIP file containing folder names,
you’ll find that it contains an
empty, zero-length entry for each
folder name within the archive. I
believe that these entries are used
to store information relating to the
folders themselves. For example, if
you want a ZIP file to reconstruct a
directory tree, it should ideally rec-
reate each directory with the origi-
nal modification date and time
information. However, I felt that
these blank entries were poten-
tially confusing to end-users, and
so my TZipFile component silently
hides them. This is done by the
NonBlankEntry routine inside Load-
DirEntry. You’ll find that my as-
sessment of the number of files in
an archive agrees with WinZip,
which also hides blank entries for
the same reason.

Let’s Get Sorted...
The final thing I want to discuss is
the operation of the sorting code.
When the ZIP directory is read into
memory, the Dir variable is set up
to contain a list of pointers to the
individual directory entries. In
principle, one could sort the direc-
tory entries by merely resorting
the entries in this TList variable.
However, if we did that, then we
wouldn’t easily be able to reverse
the operation. In order to get back
to the sRaw state, we’d have to re-
read the directory information
from disk, or perhaps allocate a
large buffer to hold the entire, un-

➤ Here’s the
sample program
running: this is
a seriously large
ZIP file, over
3Mb in size
and nearly
3,500 entries,
but TZipFile
doesn’t seem
to have any
problems
digesting it!

processed central directory infor-
mation. This isn’t a very elegant
solution.

In order to solve this problem, I
introduced an additional TList
variable called SortMap. As with
Dir, SortMap contains a list of point-
ers to the directory entries. When
a sorting operation takes place,
the contents of Dir never change,
it’s the sort map that gets modi-
fied. To return to the raw, unsorted
state, all that’s necessary is to
copy all the entries from Dir into
their corresponding positions in
SortMap.

All good programmers know
that QuickSort is the best general
purpose sorting algorithm. If
you’re unconvinced, try running
Delphi’s THREADS demo program
and you’ll soon get the message!
The algorithm I use here is a stan-
dard recursive QuickSort that op-
erates on the SortMap array.

You might wonder why I didn’t
just call the QuickSort-based Sort
method which is now supported
by TList. There are at least two
good reasons. Firstly, as men-
tioned earlier, I plan to port this
code back to 16-bit Delphi, which
does not support sorting in TLists
but only in TStringLists.

Secondly, the Sort method in re-
cent TLists has been badly imple-
mented in an inflexible manner.
The application-supplied compari-
son function only takes two
parameters, the items to be com-
pared. This means that without
resorting to global variables, or
some unpleasant hack, it’s impos-
sible for the comparison function
to access all the information it
needs to make the comparison. In

42 The Delphi Magazine Issue 24

the present case, we’d either have
to use separate comparison
functions for each distinct sort
method, or else copy fSort into a
global variable so that it could be
accessed by the comparator.

If Borland had defined TList-
SortCompare as a function of object
rather than a plain vanilla function,
then it would have been possible to
make the comparison function a
method of the TZipFile class. In the
event, I have rolled the QuickSort
functionality into the class while

(hopefully!) preserving backward
compatibility with 16-bit Delphi.
See how kind I am to you!

Next Month...
That’s it for this month. Next
month, I’ll present the code for an
all-singin’, all-dancin’ file find util-
ity which will include the ability to
search inside ZIP files.

The code for TZipFile is included
on this month’s disk, along with a
simple little test program so you

can try it out. You can see the
program running in Figure 1.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave as:

DaveJewell@msn.com,
DSJewell@aol.com or
DaveJewell@compuserve.com

	Introducing TZipFile...
	ZIP File Structure
	How It Works
	Let’s Get Sorted...
	Next Month...

